Particle Waves and Group Velocity

Particles with known energy

Consider a particle with mass *m*, traveling in the +*x* direction and known velocity v_o and energy $E_o = \frac{1}{2}mv_o$. The wavefunction that represents this particle is:

$$\Psi(x,t) = Ce^{jkx}e^{-j\omega t}$$
[1]

where C is a constant and

$$k_{\rm o} = \frac{2\pi}{\lambda_{\rm o}} = \frac{1}{\hbar} \sqrt{2mE_{\rm o}}$$
 [2]

$$\omega_{o} = 2\pi\nu_{o} = \frac{E_{o}}{\hbar}$$
[3]

The envelope $|\Psi(x,t)|^2$ of this wavefunction is

$$\left|\Psi(x,t)\right|^2 = \left|C\right|^2,$$

which is a constant. This means that when a particle's energy is known exactly, it's position is completely unknown. This is consistent with the Heisenberg Uncertainty principle.

Even though the magnitude of this wave function is a constant with respect to both position and time, its phase is not. As with any type of wavefunction, the phase velocity v_p of this wavefunction is:

$$v_{p} = \frac{\omega}{k} = \frac{E_{o} / \hbar}{\frac{1}{\hbar} \sqrt{2mE_{o}}} = \sqrt{E_{o} / 2m} = \sqrt{v_{o}^{2} / 4} = \frac{v_{o}}{2}$$
[4]

At first glance, this result seems wrong, since we started with the assumption that the particle is moving at velocity v_0 . However, only the magnitude of a wavefunction contains measurable information, so there is no reason to believe that its phase velocity is the same as the particle's velocity.

Particles with uncertain energy

A more realistic situation is when there is at least some uncertainly about the particle's energy and momentum. For real situations, a particle's energy will be known to lie only within some band of uncertainly. This can be handled by assuming that the particle's wavefunction is the superposition of a range of constant-energy wavefunctions:

$$\Psi(x,t) = \sum_{n} C_n \left(e^{jk_n x} e^{-j\omega_n t} \right)$$
[5]

Here, each value of k_n and ω_n correspond to energy E_n , and C_n is the probability that the particle has energy E_n .

Let's now consider the simplest possible case, there a particle is known to have one of two equally probably, closely-spaced energies (and corresponding velocities), given by,

$$E_{+} = E_{o} + \Delta E$$

$$E_{-} = E_{o} - \Delta E$$
[6]

Here, $E_0 = \frac{1}{2}mv_0^2$ is the mean energy, where v_0 is the mean velocity. The corresponding particle wavefunction for this particle is

$$\Psi(xt) = Ce^{jk_{+}x}e^{-j\omega_{+}t} + Ce^{jk_{-}x}e^{-j\omega_{-}t}$$
[7]

where,

$$\omega_{\pm} = \frac{E_{\circ} \pm \Delta E}{\hbar} = \omega_{\circ} \pm \Delta \omega$$
[8]

and

$$k_{\pm} = \frac{1}{\hbar} \sqrt{2mE_{\pm}} = \sqrt{\frac{2m(\omega_{\circ} \pm \Delta\omega)}{\hbar}}$$
[9]

However, if $\Delta \omega$ is small, we can use the binomial theorem to expand k_{\perp} and k_{\perp} as:

$$k_{\pm} \approx \sqrt{\frac{2m\omega_{o}}{\hbar}} \left(1 \pm \frac{1}{2} \frac{\Delta\omega}{\omega_{o}}\right) = k_{o} \pm \Delta k \qquad [10]$$

where

$$\Delta k = \Delta \omega \sqrt{\frac{m}{2\hbar\omega_{o}}} = \Delta \omega \sqrt{\frac{m}{2E_{o}}} = \frac{\Delta \omega}{v_{o}}$$
[11]

This allows us to write the wavefunction as:

$$\Psi(x.t) = Ce^{jk_{o}x}e^{-j\omega_{o}t}\left[e^{j\Delta kx}e^{-j\Delta \omega t} + e^{-j\Delta kx}e^{j\Delta \omega t}\right]$$
[12]

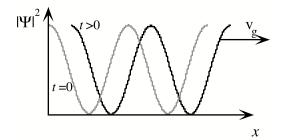
Using Euler's identity, the wavefunction becomes

$$\Psi(x,t) = 2Ce^{jk_{o}x}e^{-j\omega_{o}t}\cos(\Delta\omega t - \Delta kx)$$
[13]

The envelope of this wavefunction is the density function of the wave packet:

$$\left|\Psi(x,t)\right|^2 = 4\left|C\right|^2\cos^2(\Delta\omega t - \Delta kx)$$
[14]

Unlike the constant envelope for a particle with a uniquely known energy, *this* envelope is clearly a function of both time and position, as shown in the figure below.



As can be seen from this figure, this particle is most likely to be found at positions where $\cos^2(\Delta\omega t - \Delta kx)$ is the largest, and the regions where that occurs move to the right with increasing time with a constant velocity. This velocity is called the *group velocity*, since it's the velocity of the envelope of a group (in this case, 2) of waves traveling together. The velocity of the envelope function given by equation 14 is

$$v_g = \frac{\Delta \omega}{\Delta k}$$
, [15]

which, using equation 11 yields:

$$\mathbf{v}_g = \mathbf{v}_o$$

This agrees with our starting assumption the particle has a mean velocity of v_o.

Even though we derived the above expression for group velocity in terms of a twoenergy state particle, equation 15 is valid for particles with continuous uncertainties of energy. This means that the velocity of a particle is controlled by how its frequency varies with its wavenumber. In the limit as $\Delta E \rightarrow 0$, [15] can be expressed as

$$\mathbf{v}_{g} = \frac{\partial \omega}{\partial k} = \left[\frac{\partial k}{\partial \omega}\right]^{-1} \qquad [16]$$

This formula applies to waves of all kinds, including both matter and light wavefunctions.

For electromagnetic waves, ω and k in a vacuum are related by:

$$k = \omega \sqrt{\mu \varepsilon}$$
 (electromagnetic waves) [17]

where μ and ε are the permeability and permittivity of the medium, respectively. Hence, the group velocity of an electromagnetic wave is

$$\mathbf{v}_{g} = \frac{\partial \omega}{\partial k} = \left[\frac{\partial k}{\partial \omega}\right]^{-1} = \frac{1}{\sqrt{\mu\varepsilon} + \omega \frac{\partial}{\partial \omega} \sqrt{\mu\varepsilon}} \quad \text{(electromagnetic waves)} \quad [18]$$

If μ and ε are independent of frequency, then $v_g = 1/\sqrt{\mu\varepsilon}$, which means that the group velocity equals the phase velocity. Such media are called *nondispersive media*.

For deBroglie (mass) waves, the particle frequency is a linear function of the particle energy E, so it is typical to write the group velocity in the following form:

$$v_g = \frac{\partial \omega}{\partial k} = \frac{\partial \omega}{\partial E} \frac{\partial E}{\partial k} = \frac{1}{\hbar} \frac{\partial E}{\partial k}$$
 (deBroglie waves) [19]

Hence, the velocity of a particle is governed by how it's energy changes with respect to its wavenumber.

For a free particle with velocity v_o , $E = \frac{1}{2}mv_o^2$ and $k = \frac{2\pi}{\lambda} = \frac{mv_o}{\hbar} = \frac{1}{\hbar}\sqrt{2mE}$, so $E = \frac{\hbar^2 k^2}{2m}$. From [19], we obtain

$$\mathbf{v}_{g} = \frac{1}{\hbar} \frac{\partial E}{\partial k} = \frac{1}{\hbar} \frac{\partial}{\partial k} \left[\frac{\hbar^{2} k^{2}}{2m} \right] = \frac{1}{\hbar} \frac{\hbar^{2} k}{m} = \frac{1}{\hbar} \frac{\hbar^{2}}{m} \frac{m \mathbf{v}_{o}}{\hbar} = \mathbf{v}_{o}$$

which is the expected result.

Equation [19] is valid even when the particle is in a force field, i.e., regions where the potential function V(x) varies with position. In that case, the relationship between E and k will *not* be $k = \frac{1}{\hbar} \sqrt{2mE}$ as it is for a particle that is traveling without the influence of external forces.